
Word	Count
Counting	the	number	of	occurances	of	words	in	a	text	is	one	of	the	most
popular	first	eercises	when	learning	Map-Reduce	Programming.	It	is	the
equivalent	to	Hello World!	in	regular	programming.

We	will	do	it	two	way,	a	simpler	way	where	sorting	is	done	after	the	RDD
is	collected,	and	a	more	sparky	way,	where	the	sorting	is	also	done	using
an	RDD.

Read	text	into	an	RDD

Download	data	file	from	S3

In [2]: %%time
import urllib
data_dir='../../Data'
filename='Moby-Dick.txt'
f = urllib.urlretrieve ("https://mas-dse-open.s3.amazonaws.com/"+filename, data_dir+'/'+f
ilename)

First, check that the text file is where we expect it to be
!ls -l $data_dir/$filename

-rw-r--r-- 1 yoavfreund staff 1257260 Apr 10 21:33 ../../Data/Moby-Dick.txt
CPU times: user 37.2 ms, sys: 35.2 ms, total: 72.4 ms
Wall time: 3.5 s

Define	an	RDD	that	will	read	the	file

Note	that,	as	execution	is	Lazy,	this	does	not	necessarily	mean	that	actual
reading	of	the	file	content	has	occured.

In [3]: %%time
text_file = sc.textFile(data_dir+'/'+filename)
type(text_file)

CPU times: user 1.41 ms, sys: 1.47 ms, total: 2.88 ms
Wall time: 422 ms

Counting	the	words
split	line	by	spaces.
map	word	to	(word,1)
count	the	number	of	occurances	of	each	word.

In [4]: %%time
counts = text_file.flatMap(lambda line: line.split(" ")) \
 .filter(lambda x: x!='')\
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a, b: a + b)
type(counts)

CPU times: user 9.68 ms, sys: 3.99 ms, total: 13.7 ms
Wall time: 168 ms

Have	a	look	a	the	execution	plan

Note	that	the	earliest	node	in	the	dependency	graph	is	the	file	
../../Data/Moby-Dick.txt.

In [5]: print counts.toDebugString()

(2) PythonRDD[6] at RDD at PythonRDD.scala:43 []
 | MapPartitionsRDD[5] at mapPartitions at PythonRDD.scala:374 []
 | ShuffledRDD[4] at partitionBy at NativeMethodAccessorImpl.java:-2 []
 +-(2) PairwiseRDD[3] at reduceByKey at <timed exec>:1 []
 | PythonRDD[2] at reduceByKey at <timed exec>:1 []
 | ../../Data/Moby-Dick.txt MapPartitionsRDD[1] at textFile at NativeMethodAccessorIm
pl.java:-2 []
 | ../../Data/Moby-Dick.txt HadoopRDD[0] at textFile at NativeMethodAccessorImpl.jav
a:-2 []

Count!

Finally	we	count	the	number	of	times	each	word	has	occured.	Now,
finally,	the	Lazy	execution	model	finally	performs	some	actual	work,
which	takes	a	significant	amount	of	time.

In [6]: %%time
Count=counts.count()
Sum=counts.map(lambda (w,i): i).reduce(lambda x,y:x+y)
print 'Count=%f, sum=%f, mean=%f'%(Count,Sum,float(Sum)/Count)

Count=33782.000000, sum=215133.000000, mean=6.368273
CPU times: user 10.2 ms, sys: 4.53 ms, total: 14.7 ms
Wall time: 1.35 s

Finding	the	most	common	words
counts:	RDD	with	33301	pairs	of	the	form	(word,count).
Find	the	2	most	frequent	words.
Method1:	collect	and	sort	on	head	node.
Method2:	Pure	Spark,	collect	only	at	the	end.

Method1:	collect	and	sort	on	head	node

Collect	the	RDD	into	the	driver	node

Collect	can	take	significant	time.

In [7]: %%time
C=counts.collect()
print type(C)

<type 'list'>
CPU times: user 43.9 ms, sys: 7.95 ms, total: 51.9 ms
Wall time: 129 ms

Sort

RDD	collected	into	list	in	driver	node.
No	longer	using	spark	parallelism.
Sort	in	python
will	not	scale	to	very	large	documents.

In [8]: C.sort(key=lambda x:x[1])
print 'most common words\n','\n'.join(['%s:\t%d'%c for c in C[-5:]])
print '\nLeast common words\n','\n'.join(['%s:\t%d'%c for c in C[:5]])

most common words
to: 4510
a: 4533
and: 5951
of: 6587
the: 13766

Least common words
funereal: 1
unscientific: 1
lime-stone,: 1
shouted,: 1
pitch-pot,: 1

Method2:	Pure	Spark,	collect	only	at	the	end.
Collect	into	the	head	node	only	the	more	frquent	words.
Requires	multiple	stages

Step	1	split,	clean	and	map	to	(word,1)

In [10]: %%time
RDD=text_file.flatMap(lambda x: x.split(' '))\
 .filter(lambda x: x!='')\
 .map(lambda word: (word,1))

CPU times: user 43 µs, sys: 13 µs, total: 56 µs
Wall time: 51 µs

Step	2	Count	occurances	of	each	word.

In [11]: %%time
RDD1=RDD.reduceByKey(lambda x,y:x+y)

CPU times: user 8.67 ms, sys: 2.94 ms, total: 11.6 ms
Wall time: 20.5 ms

Step	3	Reverse	(word,count)	to	(count,word)	and	sort	by	key

In [12]: %%time
RDD2=RDD1.map(lambda (c,v):(v,c))
RDD3=RDD2.sortByKey(False)

CPU times: user 18.1 ms, sys: 5.12 ms, total: 23.2 ms
Wall time: 430 ms

Full	execution	plan

We	now	have	a	complete	plan	to	compute	the	most	common	words	in	the
text.	Nothing	has	been	executed	yet!	Not	even	one	one	bye	has	been
read	from	the	file	Moby-Dick.txt	!

For	more	on	execution	plans	and	lineage	see	

In [13]:

jace	Klaskowski's	blog

print 'RDD3:'
print RDD3.toDebugString()

RDD3:
(2) PythonRDD[19] at RDD at PythonRDD.scala:43 []
 | MapPartitionsRDD[18] at mapPartitions at PythonRDD.scala:374 []
 | ShuffledRDD[17] at partitionBy at NativeMethodAccessorImpl.java:-2 []
 +-(2) PairwiseRDD[16] at sortByKey at <timed exec>:2 []
 | PythonRDD[15] at sortByKey at <timed exec>:2 []
 | MapPartitionsRDD[12] at mapPartitions at PythonRDD.scala:374 []
 | ShuffledRDD[11] at partitionBy at NativeMethodAccessorImpl.java:-2 []
 +-(2) PairwiseRDD[10] at reduceByKey at <timed exec>:1 []
 | PythonRDD[9] at reduceByKey at <timed exec>:1 []
 | ../../Data/Moby-Dick.txt MapPartitionsRDD[1] at textFile at NativeMethodAccessorI
mpl.java:-2 []
 | ../../Data/Moby-Dick.txt HadoopRDD[0] at textFile at NativeMethodAccessorImpl.ja
va:-2 []

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-lineage.html#toDebugString

Step	4	Take	the	top	5	words.	only	now	the	computer	executes	the	plan!

In [14]: %%time
C=RDD3.take(5)
print 'most common words\n','\n'.join(['%d:\t%s'%c for c in C])

most common words
13766: the
6587: of
5951: and
4533: a
4510: to
CPU times: user 11.7 ms, sys: 3.73 ms, total: 15.5 ms
Wall time: 171 ms

